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Abstract

We establish connections between the concept of orthogonal polynomials and several numerical
techniques from rational approximation, Gaussian quadrature and exponential analysis, both in
one as well as in several variables.

1. Univariate case
For a linear functional L : C[t] → C : ti → ei, a sequence of orthogonal polynomials

{Vm(z)}m∈N can be defined by

L
(
tiVm(t)

)
= 0, i = 0, . . . ,m− 1.

In [7] these formally orthogonal polynomials are called Hadamard polynomials.

With the Vm(z) we can define associated polynomials

Wm−1(z) = L

(
Vm(z)− Vm(t)

z − t

)
and reverse polynomials

Ṽm(z) = zmVm(1/z).

The Padé approximant [m − 1/m]F of degree m − 1 in the numerator and degree m in the
denominator to the formal power series

F (z) =
∞∑
i=0

eiz
i

precisely equals W̃m−1(z)/Ṽm(z). Hence the denominator of this Padé approximant is closely
related to the orthogonal polynomial Vm(z).

When the ei are so-called moments, for instance

ei =

∫ 1

−1
w(t)ti dt, 0 <

∫ 1

−1
w(t) dt,

then

F (z) =

∫ 1

−1
w(t)

1

1− tz
dt

and the m-point Gaussian quadrature rule∫ 1

−1
w(t)

1

1− tz
dt ≈

m∑
i=1

A
(m)
i

1

1− z
(m)
i z

,

approximating F (z), equals the [m − 1/m]F Padé approximant. The Gaussian nodes z
(m)
i are

the zeroes of Vm(z) and the weights A
(m)
i are given by

A
(m)
i =

Wm−1(z
(m)
i )

V ′
m(z

(m)
i )

, i = 1, . . . ,m.
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Since this Gaussian quadrature rule exactly integrates polynomials of degree 2m− 1, we also
have

ej =
m∑
i=1

A
(m)
i

(
z
(m)
i

)j
, j = 0, . . . , 2m− 1.

Hence the nodes and weights can be obtained as the solution of the exponential analysis or
Prony problem [6]

ej =

m∑
i=1

A
(m)
i exp(jϕ

(m)
i ), z

(m)
i = exp(ϕ

(m)
i ), j = 0, . . . , 2m− 1,

where only m and the ej are given. The z
(m)
i are the generalized eigenvalues of a Hankel

structured generalized eigenvalue problem and the A
(m)
i are the solution of a Vandermonde

structured linear system [8].

2. Multivariate case

The concept of the formally orthogonal polynomial Vm(z) is generalized in [4], for different
radial weight functions, to so-called spherical orthogonal polynomials. The latter differ from
several other definitions of multivariate orthogonal polynomials, in that they preserve the con-
nections laid out above.

Homogeneous multivariate Padé approximants, as defined in [2, 3], can also be obtained from
the spherical orthogonal polynomials in a similar way as described here. The homogeneous
definition satisfies a very strong projection property, in the sense that this multivariate Padé
approximant reduces to the univariate Padé approximant on every one-dimensional subspace.

A whole lot of Gaussian cubature rules on the disk can be united in a single approach [1]
when developing the existing rules from these spherical orthogonal polynomials. What’s more,
the nodes and weights of such Gaussian cubature rules on the disk can be obtained as the
solution of a multivariate Prony-like system of interpolation conditions [1]. And this brings us
to the next connection.

Prony’s result that an m-term exponential analysis problem can be solved uniquely from 2m
samples ei, is a one-dimensional result. In [5] this result is proven, more than 200 years later,
to hold for higher dimensions d > 1: a multivariate linear combination of m exponential terms
with unknown inner product exponents can, under mild conditions, be fitted using only (d+1)m
data.
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