Guía docente de Matemáticas II (2911117)
Grado
Rama
Módulo
Materia
Curso
Semestre
Créditos
Tipo
Profesorado
Teórico
- Juan Calvo Yagüe. Grupo: B
- María Clotilde Martínez Álvarez. Grupo: A
Práctico
- Juan Calvo Yagüe Grupo: 3
- María Clotilde Martínez Álvarez Grupo: 1
- José Antonio Martínez Aroza Grupos: 4, 5 y 6
- Elena Torres Lozano Grupos: 2, 3 y 6
Tutorías
Juan Calvo Yagüe
Email- Primer semestre
- Miércoles de 10:00 a 13:00 (Con Petición de Cita Previa por Email)
- Jueves de 10:00 a 13:00 (Con Petición de Cita Previa por Email)
- Segundo semestre
- Lunes
- 10:00 a 11:00 (Con Petición de Cita Previa por Email)
- 12:00 a 13:00 (Con Petición de Cita Previa por Email)
- Martes de 12:00 a 13:00 (Con Petición de Cita Previa por Email)
- Miércoles de 11:00 a 13:00 (Con Petición de Cita Previa por Email)
- Jueves de 10:00 a 11:00 (Con Petición de Cita Previa por Email)
María Clotilde Martínez Álvarez
Email- Primer semestre
- Lunes de 10:00 a 13:00 (Despacho 50. Segunda Planta. Facultad de Ciencias)
- Miércoles de 16:30 a 17:30 (Despacho B08 Facultad de Ciencias Ecoómicas y Empresariales)
- Viernes de 17:30 a 18:30 (Despacho B08 Facultad de Ciencias Económicas y Empresariales)
- Segundo semestre
- Lunes de 10:00 a 13:00 (Despacho 50. Segunda Planta. Facultad de Ciencias)
- Martes
- 09:00 a 10:00 (Despacho 50. Segunda Planta. Facultad de Ciencias.)
- 11:00 a 13:00 (Despacho 50. Segunda Planta. Facultad de Ciencias.)
José Antonio Martínez Aroza
Email- Primer semestre
- Martes de 11:00 a 14:00 (Necesaria Cita Previa)
- Miércoles de 11:00 a 14:00 (Necesaria Cita Previa)
- Segundo semestre
- Lunes
- 11:00 a 12:00 (Necesaria Cita Previa)
- 13:00 a 14:00 (Necesaria Cita Previa)
- Martes de 11:00 a 12:00 (Necesaria Cita Previa)
- Miércoles
- 11:00 a 12:00 (Necesaria Cita Previa)
- 17:00 a 18:00 (Necesaria Cita Previa)
- Jueves de 11:00 a 12:00 (Necesaria Cita Previa)
Elena Torres Lozano
EmailPrerrequisitos y/o Recomendaciones
- Tener cursada la asignatura Matemáticas I
Breve descripción de contenidos (Según memoria de verificación del Máster)
• Distribuciones estadísticas. Regresión y correlación.
• Introducción a la Probabilidad. Variables aleatorias. Distribución de Probabilidad.
• Interpolación polinómica. Derivación e integración numéricas.
• Introducción a la simulación y validación de métodos.
• Métodos numéricos para la resolución de sistemas de ecuaciones lineales: Métodos iterativos.
Competencias
Competencias Generales
- CG01. El alumno deberá adquirir la capacidad de analizar y sintetizar
- CG02. El alumno deberá adquirir la capacidad de organizar y planificar
- CG03. El alumno deberá adquirir la capacidad de comunicarse de forma oral y escrita en la lengua oficial del Grado
- CG05. El alumno deberá adquirir la capacidad de gestionar datos y generar información / conocimiento
- CG06. El alumno deberá adquirir la capacidad de resolver problemas
- CG07. El alumno deberá adquirir la capacidad de adaptarse a nuevas situaciones y tomar decisiones de forma correcta
- CG08. El alumno deberá adquirir la capacidad de trabajar en equipo
- CG09. El alumno deberá adquirir la capacidad de razonar críticamente
Competencias Específicas
- CE46. El alumno deberá saber o conocer los fundamentos o principios de otras disciplinas necesarios para las distintas áreas de la Química.
Resultados de aprendizaje (Objetivos)
Al cursar esta asignatura el alumno deberá:
- Conocer el concepto de error en la medida de las magnitudes físicas y químicas, las fuentes del mismo, y su propagación en los resultados experimentales.
- Tener un conocimiento básico de estadística aplicada al tratamiento de los resultados experimentales, que permita estimar la fiabilidad de los valores finales de las magnitudes medidas.
- Tener un conocimiento de los métodos numéricos que permitan el ajuste de los resultados experimentales a las funciones teóricas físico-químicas, así como de aquellos que permiten la obtención de los valores de la derivada y de la integral numérica.
- Manejar las herramientas y los programas informáticos que facilitan el tratamiento estadístico de los resultados experimentales, así como de su ajuste a ecuaciones teóricas o empíricas que permitan la simulación de los procesos y la validación de los métodos.
Programa de contenidos Teóricos y Prácticos
Teórico
Tema 1. Distribuciones estadísticas. Regresión y correlación.
- Estadística descriptiva unidimensional.
- Representación de datos.
- Estadísticos más usuales.
- Estadística descriptiva bidimensional:
- Distribuciones marginales. Distribuciones condicionadas.
- Covarianza.
- Independencia.
- Regresión y Correlación. Ajuste de datos.
Tema 2. Introducción a la Probabilidad.
- Introducción a la probabilidad. Teoremas básicos.
- Variables aleatorias.
- Distribución de probabilidad.
- Cálculo de probabilidades
- Distribuciones de probabilidad: Binomial, Poisson y Normal.
Tema 3. Interpolación polinómica.
• Método de los coeficientes indeterminados.
• Problema de interpolación de Lagrange.
• Problema de interpolación de Hermite.
• Problema de interpolación de Taylor: desarrollos de Taylor.
• Error en la interpolación polinomial.
Tema 4. Derivación e integración numéricas.
• Fórmulas de derivación numérica de tipo interpolatorio. Fórmulas clásicas y su error.
• Fórmulas de integración numérica de tipo interpolatorio. Fórmulas clásicas y su error.
• Fórmulas de cuadratura compuesta. Fórmulas clásicas y su error.
• Métodos de simulación de ecuaciones diferenciales ordinarias: el método de Euler.
Tema 5. Métodos numéricos para la resolución de sistemas de ecuaciones lineales.
• Métodos directos: errores asociados.
• Factorización de Cholesky.
• Introducción a los métodos iterativos.
Práctico
Prácticas con ordenador. (Software: programa de cálculo numérico libre a elección del profesorado).
Práctica 1. Distribuciones y ajustes por mínimos cuadrados.
Práctica 2. Cálculo de probabilidades.
Práctica 3. Interpolación.
Práctica 4. Fórmulas de derivación numérica e integración numérica.
Práctica 5. Cinética química.
Bibliografía
Bibliografía fundamental
- BURDEN, R. L. & FAIRES J. D.(2011) Análisis Numérico (9ª edición), Novena edición, Cengage Learning Editores, México.
- HERMOSO, J.A. & HERNÁNDEZ, A. (2000), “Curso básico de estadística descriptiva y probabilidad: Teoría y problemas”. Némesis.
- MARTÍNEZ ALVAREZ, F. (2009), Problemas de Estadística para Ingenieros. Ed. Godel.
- SANZ-SERNA, J.M. (1998) “Diez lecciones de Cálculo Numérico”. Universidad de Valladolid.
- RODRIGUEZ, L. J., TOMEO, V., UÑA, I. (2009) "Métodos estadísticos para ingeniería". Garceta grupo editorial.
- VÁZQUEZ, C. "Cálculo numérico". García-Maroto Editores S.L.
Bibliografía complementaria
- CALOT, G. (1970). “Curso de Estadística descriptiva”. Paraninfo.
- GASCA, M. (1996). “Cálculo Numérico”. U.N.E.D.
- KINCAID, D. & CHENEY, W. (1994). “”Análisis numérico. Las matemáticas del cálculo científico”. Addison-Wesley Iberoamericana.
- MARTÍNEZ ALVAREZ, C. & MARTÍNEZ ALVAREZ, F. (2014), Apuntes de Estadística y Optimización. Ed. Godel.
- PEÑA, DANIEL (2008) “Fundamentos De Estadística”, Alianza Editorial.
Enlaces recomendados
- http://fciencias.ugr.es para acceso a la web de la Facultad de Ciencias.
- https://mateapli.ugr.es para acceso a la web del Departamento de Matemática Aplicada.
- Enlace a plataforma docente a elegir por el profesorado para acceso al material docente de las prácticas de la asignatura.
Metodología docente
- MD01. Lección magistral/expositiva.
- MD02. Resolución de problemas y estudios de casos prácticos.
- MD05. Prácticas en sala de informática.
- MD06. Seminarios.
- MD08. Realización de trabajos en grupo.
- MD09. Realización de trabajos individuales.
Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)
Evaluación Ordinaria
Por defecto, todos los alumnos seguirán el sistema de evaluación continua que aparece a continuación, salvo que indiquen lo contrario en tiempo y forma al Director del Departamento (Normativa de Evaluación y de Calificación de los estudiantes de la Universidad de Granada).
Evaluación Continua.- Se realizarán exámenes escritos de teoría y problemas, y pruebas relativas a las prácticas con ordenador atendiendo a la ponderación porcentual siguiente:
- Exámenes de teoría y problemas: 75%. Tres pruebas con una ponderación de un 30% las dos primeras y un 15% la tercera.
- Pruebas relativas a las prácticas con ordenador: 25%.
Para aprobar la asignatura mediante la evaluación continua será necesario obtener al menos 5 puntos, sobre un total de 10, al sumar las calificaciones obtenidas en todos los exámenes y pruebas mencionados anteriormente, con la condición adicional de que las calificaciones de todas las pruebas de teoría habrán de ser iguales o superiores a 3 puntos sobre 10 en cada una de ellas.
Evaluación Extraordinaria
Se realizará un único examen que constará de dos pruebas con las mismas características que las de la evaluación única final con la siguiente salvedad: Los alumnos que comuniquen a su profesor de teoría, en la forma y plazo que éste establezca para ello, que no van a realizar la prueba relativa a las prácticas con ordenador conservarán para dicha prueba la calificación obtenida en las prácticas con ordenador en la convocatoria ordinaria. Estos alumnos, por tanto, tendrán que realizar únicamente la prueba de teoría y problemas de la convocatoria extraordinaria. En cualquier caso, para aprobar la asignatura será necesario obtener al menos 5 puntos, sobre un total de 10, al sumar las calificaciones obtenidas en las dos pruebas.
Evaluación única final
Consistirá en un único examen que se referirá a todo el programa de la asignatura y que constará de dos pruebas:
- Una prueba de teoría y problemas (con una ponderación del 75%).
- Una prueba relativa a las prácticas con ordenador (con una ponderación del 25%).
Para aprobar la asignatura será necesario obtener al menos 5 puntos, sobre un total de 10, al sumar las calificaciones obtenidas en las dos pruebas.
Información adicional
Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).
Software Libre
Octave (https://octave.org/)