Guía docente de Matemáticas (2361111)

Curso 2022/2023
Fecha de aprobación: 13/06/2022

Grado

Grado en Marketing e Investigación de Mercados

Rama

Ciencias Sociales y Jurídicas

Módulo

Formación Básica

Materia

Matemáticas

Curso

1

Semestre

1

Créditos

6

Tipo

Troncal

Profesorado

Teórico

  • Joaquín Francisco Sánchez Lara. Grupo: B
  • Olga Valenzuela Cansino. Grupo: A

Práctico

  • Joaquín Francisco Sánchez Lara Grupos: 3 y 4
  • Olga Valenzuela Cansino Grupos: 1 y 2

Tutorías

Joaquín Francisco Sánchez Lara

Email
  • Primer semestre
    • Lunes de 17:30 a 18:30 (Desp B02 - Fac Empresariales)
    • Martes de 17:30 a 18:30 (Desp B02 - Fac Empresariales)
    • Jueves de 09:30 a 13:30 (Desp B02 - Fac Empresariales)
  • Segundo semestre
    • Lunes de 18:30 a 19:30 (Desp B02 - Fac Empresariales)
    • Martes de 18:30 a 19:30 (Desp B02 - Fac Empresariales)
    • Miércoles de 09:30 a 13:30 (Desp B02 - Fac Empresariales)

Olga Valenzuela Cansino

Email
  • Lunes de 07:45 a 08:30 (Despacho B08 Fccee)
  • Martes de 07:45 a 08:30 (Despacho B08 Fccee)
  • Miércoles de 09:00 a 13:30 (Despacho 26 E.T.S.I.Edificación)

Prerrequisitos y/o Recomendaciones

Matemáticas de los niveles de aprendizaje preuniversitarios

Breve descripción de contenidos (Según memoria de verificación del Máster)

  • Series numéricas. Series geométricas.
  • Cálculo diferencial de funciones reales de una variable.
  • Optimización de funciones de una variable.
  • Cálculo integral de funciones reales de una variable.
  • Matrices y determinantes. Resolución de sistemas de ecuaciones lineales.
  • Diagonalización de matrices

.

 

 

Competencias

Competencias Generales

  • CG01. Capacidad para el análisis crítico y la síntesis 
  • CG08. Capacidad para la resolución de problemas 
  • CG09. Capacidad para la toma de decisiones 
  • CG16. Capacidad de razonamiento crítico y autocrítico 
  • CG17. Habilidad para trabajar de forma autónoma 
  • CG19. Creatividad o habilidad para generar nuevas ideas 
  • CG23. Capacidad de aprendizaje autónomo  
  • CG24. Capacidad para aplicar los conocimientos de Marketing e Investigación de Mercados a la práctica 

Competencias Específicas

  • CE07. Conocer y ser capaz de aplicar las herramientas básicas de naturaleza cuantitativa para el diagnóstico y análisis empresarial 
  • CE10. Conocer y aplicar los conceptos básicos de Matemáticas 
  • CE11. Conocer el manejo de las técnicas básicas del álgebra lineal y aplicar las técnicas del cálculo diferencial e integral en funciones de una variable 
  • CE12. Conocer las series numéricas y aprender a calcular el valor de la suma en las series geométricas 

Competencias Transversales

  • CT01. Capacidad para analizar y comprender las fuerzas del mercado que influyen en las actividades comerciales y para valorar críticamente situaciones empresariales. 

Resultados de aprendizaje (Objetivos)

  • Adquisición de las técnicas básicas de las Matemáticas.
  • Capacidad de plantear con lenguaje matemático un problema económico-empresarial.
  • Relacionar los conocimientos adquiridos con los conceptos típicos de otras materias de la titulación (Estadística, Teoría Económica, Contabilidad).
  • Resolución de problemas planteados en el ámbito económico-empresarial usando las técnicas matemáticas más adecuadas.
  • Analizar cuantitativamente la realidad económico-empresarial.
  • Calcular el valor de las sumas en las series geométricas.
  • Interpretar adecuadamente las gráficas de funciones de una variable.
  • Calcular derivadas y primitivas de las funciones elementales.
  • Resolver problemas de optimización de funciones de una variable.
  • Resolver simbólicamente ecuaciones matriciales abstractas.
  • Calcular determinantes de matrices cuadradas de dimensión baja.
  • Calcular las matrices inversas de las matrices regulares de dimensión baja.
  • Calcular e interpretar los valores propios y los vectores propios de matrices cuadradas.
  • Aplicar los conocimientos abstractos a problemas formulados con terminología económica.

 

Programa de contenidos Teóricos y Prácticos

Teórico

 

 

  1. Conceptos básicos sobre funciones de una variable
    1.  Intervalos. Dominio e imagen de una función.
    2.  Funciones elementales. Propiedades.
    3.  Funciones en Economía: oferta, demanda, ingresos, costes, beneficios, utilidad.
    4.  Límite de una función en un punto. Continuidad.
    5.  Teorema de Bolzano.  Aplicaciones.

 

  1. Cálculo diferencial de funciones de una variable
    1.  Derivabilidad: interpretaciones y aplicaciones.
    2.  Derivadas de las funciones elementales. Reglas de derivación.

 

  1. Optimización de funciones de una variable
    1.  Crecimiento y decrecimiento. Concavidad y convexidad.
    2.  Extremos relativos y extremos absolutos.  Teorema de Weierstrass.

 

  1. Cálculo integral de funciones de una variable
    1. Cálculo de primitivas.
    2.  Integral definida. Regla de Barrow.

 

  1. Conceptos básicos sobre matrices
    1.  Generalidades sobre matrices: notación, operaciones y propiedades.
    2.  Cálculo de determinantes.
    3.  Cálculo de matrices inversas.

 

  1. Sistemas de ecuaciones lineales
    1.  Reducción de matrices. Rango de  una matriz.
    2.  Método de Gauss. 
    3.  Teorema de Rouché- Fröbenius.
    4.  Sistemas homogéneos.

 

  1. Diagonalización de matrices por semejanza
    1.  Determinación de valores propios  y vectores propios de una matriz.
    2.  Matrices equivalentes y matrices de paso. Diagonalización.
    3.  Interpretaciones y aplicaciones económicas.

 

  1. Sucesiones y series de números reales
    1.  Sucesiones de números reales, operadores sobre sucesiones, sucesiones aritméticas y geométricas.
    2.  Series de números reales, convergencia y criterios de convergencia.
    3.  Sumas de series geométricas.

Práctico

Seminarios/Talleres:

 Se podrá realizar un seminario, cuyos contenidos serán elegidos, entre los siguientes:

Seminario 1: Ecuaciones de la oferta y la demanda. Regiones de beneficios.

Seminario 2: Optimización de funciones típicas de la economía.

Prácticas:

Se realizará una introducción al paquete informático y se  realizarán las siguientes prácticas:

Práctica 1: Representación de funciones de una variable. Derivación e integración.

Práctica 2: Operaciones con matrices. Resolución de sistemas de ecuaciones lineales. Diagonalización de matrices.

Bibliografía

Bibliografía fundamental

  • M. Álvarez de Morales Mercado y M.A. Fortes Escalona. Matemáticas Empresariales. Ed. Copicentro.
  • M. Álvarez de Morales Mercado y M.A. Fortes Escalona. Matemáticas para Economía y Administración y Dirección de Empresas. Ed. Godel (2016).
  • García Cabello, J., Matemáticas Imprescindibles en la Administración de Empresas: ejemplos prácticos y aplicaciones, Librería Fleming. Editorial Técnica Avicam (2016).
  • J. García Cabello. El Cálculo Diferencial de las Ciencias Económicas. Ed. Delta Publicaciones.
  • J.R. Haeussler. Matemáticas para Administración, Economía, Ciencias Sociales y de la Vida. Ed. Prentice Hall.
  • Stewart, J., Cálculo Diferencial e integral. Ed. Thomson.
  • H. Sydsaeter. Matemáticas para el Análisis Económico. Ed. Prentice Hall.
  • Larson, R B., R P. Hostetler y B. H. Edwards. Cálculo y geometría analítica. Vol. I (9 Ed.) Mc-Graw-Hill, Madrid, (2011).
  • Merino, L. M. y E. Santos. Algebra Lineal con métodos elementales. Ed. Thomson, (2006).
  • Zill, D. y Wright, W. Cálculo de una variable. Mc Graw Hill, (2011)

 

Bibliografía complementaria

  • Alegre P. y otros. Matemáticas Empresariales. Ed. AC.
  • Balbás  A. y otros. Análisis Matemático para la  Economía  (I  y II). Ed. AC.
  • Caballero R. y otros. Matemáticas Aplicadas a la  Economía y la Empresa.  Ed. Pirámide.

Metodología docente

  • MD01. Docencia presencial en el aula 
  • MD02. Estudio individualizado del alumno, búsqueda, consulta y tratamiento de información, resolución de problemas y casos prácticos, y realización de trabajos y exposiciones. 
  • MD03. Tutorías individuales y/o colectivas y evaluación  

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación Ordinaria

La evaluación será preferentemente continua. No obstante, el alumno podrá solicitar la evaluación única final de acuerdo con la "Normativa de Evaluación y de Calificación de los Estudiantes de la UGR” (ver apartado correspondiente más adelante). Si un alumno no solicita la evaluación única final en el plazo y forma establecidos, se entenderá que renuncia al uso de esta posibilidad.

 

En el sistema de evaluación continua, la asistencia a las pruebas correspondientes será obligatoria, concretamente, la falta de asistencia en la hora y lugar fijados para ello, conllevará la pérdida del derecho a su realización. Se harán públicas con suficiente antelación, la hora y lugar de estas actividades y se controlará la asistencia de cada alumno.

 

Los alumnos que sigan la evaluación continua realizarán  las siguientes pruebas:

 

  • Diversas actividades: las cuales podrán ser exámenes parciales, seminarios/talleres, prácticas con software de computación matemática, exámenes virtuales, ejercicios escritos, salidas presenciales a pizarra, ejercicios de clase, entrega de trabajo (a elegir por cada profesor) y suponen un 50% de la calificación final (5 puntos).
  • Examen final escrito que supone un 50% de la calificación final (5 puntos). La fecha y lugar, serán fijados por la Facultad y la convocatoria definitiva se podrá consultar en la página http://fccee.ugr.es. Cualquier otra información relativa a dichas convocatorias, publicada en cualquier otro medio no será vinculante.

 

La calificación final será la suma de todas estas notas siempre que el alumno se presente al examen final. En caso de que un alumno no se presente al examen final, tendrá la calificación de “No presentado”.

 

Evaluación Extraordinaria

 

Se hará un único examen de teoría cuya  nota máxima será de 10 puntos. El alumno que haya obtenido una nota  igual o superior a 5 puntos en el examen, estará aprobado en dicha convocatoria y suspenso en caso contrario.

Evaluación única final

La prueba de la evaluación única final a la que el alumno puede acogerse en los casos indicados en la Normativa de Evaluación y de Calificación de los Estudiantes de la UGR con última modificación aprobada en Consejo de Gobierno el 26 de octubre de 2016 y publicado en BOUGR núm. 112, el 9 de noviembre de 2016 (http://secretariageneral.ugr.es/bougr/pages/bougr112/_doc/examenes%21, ver artículo 8) constará de:

•              Un examen final escrito puntuado con un máximo de 10 puntos. La fecha y lugar serán fijados por la Facultad y coincidirán con las de la evaluación continua.

Información adicional

Tanto para la evaluación continua, como para la evaluación única final, todos los aspectos relativos a la evaluación se regirán por la normativa vigente de la Universidad de Granada.

 

Normativa de Evaluación y de Calificación de los  Estudiantes de la UGR con última modificación aprobada en Consejo de Gobierno el 26 de octubre de 2016 y publicado en BOUGR núm. 112, el 9 de noviembre de 2016 (http://secretariageneral.ugr.es/bougr/pages/bougr112/_doc/examenes%21).