Guía docente de Matemáticas Aplicadas a la Arquitectura (20911A1)

Curso 2025/2026
Fecha de aprobación: 27/06/2025

Grado

Grado en Estudios de Arquitectura

Rama

Ingeniería y Arquitectura

Módulo

Módulo de Optatividad

Materia

Matemáticas Aplicadas a la Arquitectura y al Urbanismo

Curso

3

Semestre

1

Créditos

6

Tipo

Optativa

Profesorado

Teórico

Miguel Luis Rodríguez González. Grupo: A

Práctico

Miguel Luis Rodríguez González Grupo: 1

Tutorías

Miguel Luis Rodríguez González

Email
  • Primer semestre
    • Lunes
      • 08:30 a 12:30 (Etsa Arquitectura Primera Planta Despacho 1)
      • 17:00 a 19:00 (Etsa Arquitectura Primera Planta Despacho 1)
    • Martes de 08:30 a 10:30 (Etsa Arquitectura Primera Planta Despacho 1)
  • Segundo semestre
    • Lunes de 08:30 a 14:30 (Ets Caminos Canales y Puertos, Despacho 47B)

Prerrequisitos y/o Recomendaciones

Haber adquirido las competencias descritas en la materia básica Fundamentos de Matemáticas 1 y 2.

En el caso de utilizar herramientas de IA para el desarrollo de la asignatura, el estudiante debe adoptar un uso ético y responsable de las mismas. Se deben seguir las recomendaciones contenidas en el documento de "Recomendaciones para el uso de la inteligencia artificial en la UGR" publicado en esta ubicación: https://ceprud.ugr.es/formacion-tic/inteligencia-artificial/recomendaciones-ia#contenido0

Breve descripción de contenidos (Según memoria de verificación del Máster)

Teoría Matemática de la Proporción en Arquitectura. Teoría de la Simetría en Arquitectura y Urbanismo. Geometrías equiforme, afín, proyectiva y fractal.

Competencias

Competencias Generales

  • CG01. Capacidad de análisis y síntesis 
  • CG05. Conocimientos de informática relativos al ámbito de estudio 
  • CG07. Resolución de problemas 
  • CG16. Aprendizaje autónomo 
  • CG28. Comprensión numérica 

Competencias Específicas

  • CE03. Conocimiento aplicado de: El cálculo numérico, la geometría analítica y diferencial y los métodos algebraicos. 

Resultados de aprendizaje (Objetivos)

  • Interpretar los conceptos básicos de las principales ramas de las matemáticas como el álgebra, la trigonometría y la geometría analítica.
  • Conocer teorías para transformarlas en acciones concretas.
  • Demostrar que comprende los procedimientos utilizados a través de un análisis crítico.
  • Implementar con precisión los métodos y relacionarlos con esta disciplina.
  • Aplicar los modelos matemáticos tratados en el análisis y diseño de edificios, urbanizaciones, zonas urbanas y ciudades.

Programa de contenidos Teóricos y Prácticos

Teórico

Tema 0. Repaso de los requisitos previos.

  • Teselaciones.
  • Curvas y superficies.

Tema 1. Simetría dinámica.

  • Rosáceas, frisos y mosaicos en 2D y 3D.
  • Estructuras de barras tridimensionales.
  • Estudio de las isometrías del plano y del espacio euclídeo.
  • Descripción, generadores y algoritmo de clasificación de grupos cristalográficos planos.
  • Aplicaciones a la composición arquitectónica y al urbanismo.

Tema 2. Teoría de la proporción.

  • Proporciones estáticas y dinámicas en la Arquitectura.
  • Proporción áurea. Espiral de Durero.
  • Proporciones en la arquitectura andaluza. La proporción cordobesa.
  • Series roja y azul de Le Corbusier.
  • Estudio de edificios singulares desde la estética de proporciones.
  • Cúpulas geodésicas.

Tema 3. Otras transformaciones geométricas.

  • Afinidades, homotecias, inversiones y proyecciones.
  • Introducción a la Geometría Proyectiva como complemento a la Geometría Descriptiva.
  • Aplicaciones a la arquitectura.

Tema 4. Geometría fractal.

  • Concepto de conjunto fractal. Conjuntos de Julia y de Mandelbrot.
  • Dimensión fractal.
  • Determinación matricial de transformaciones geométricas para la implementación de algoritmos en ordenador que generen conjuntos fractales.
  • Aplicaciones de la fractalidad al diseño arquitectónico y al urbanismo.

Práctico

A lo largo del curso, los estudiantes elaboran proyectos arquitectónicos basados en el uso de herramientas matemáticas. Las teorías anteriormente descritas en el programa de la asignatura, dan pie al análisis de obras arquitectónicas emblemáticas como Medina Zahara y la Alhambra en arquitectura islámica, la arquitectura renacentista de Granada, Jaén, Úbeda y Baeza (estas dos últimas ciudades están catalogadas como Patrimonio de la Humanidad), diferentes aspectos relacionados con el urbanismo, tanto el relativo a jardines como a áreas de ciudades, están contemplados magistralmente en el Plan Cerdá del ensanche de Barcelona o en el Jardín Botánico del Anillo Olímpico de la misma ciudad y, cómo no, el estudio de obras singulares centra la mayor parte de nuestro interés. Dentro de estas últimas, la sede central de BBVA en Madrid, de Sáez de Oiza, la sede del Parlamento Europeo en Estrasburgo, la propuesta de intervención en el Museo Victoria Alberto de Londres, etc.

Se realizarán entre 10 y 15 ejercicios prácticos en las correspondientes clases prácticas. Algunos ejemplos de temas serían:

  1. Proporciones estáticas y dinámicas
    • El hombre de Vitruvio.
    • El Templo de Salomón
    • El Escorial.
    • El modulor de Leonardo
    • La cuadratura del círculo.
  2. Proporción áurea
    • Pell, Padovan y Van der Laan.
    • Cajas plásticas.
    • Números mórficos.
  3. Proporciones en la arquitectura romana y andalusí
    • Anfiteatro de Itálica.
    • Teatro romano de Mérida.
    • Medina Zahara.
  4. Proporciones en la arquitectura renacentista italiana y en el manierismo español
    • Santa María Novella.
    • Villa Capra o la Rotunda.
    • Catedral de Santa Catalina, Jaén.
    • Hospital de Santiago, Úbeda.
    • El Escorial.
    • Palacio de Carlos V.
  5. El racionalismo. Le Corbusier
    • Series azul, roja y negra.
    • Le Corbusier y Koolhaas.
    • Le Corbusier y Adolf Loos.
    • Palladio y Mies Van der Rohe.
  6. Estructuras espaciales. Fuller
    • Estructuras de tensegridad.
    • Cúpulas geodésicas.
  7. El deconstructivismo.
    • Morphing aplicado a edificios singulares de Peter Eisenman, Bernard Tschumi, Frank Gehry…
  8. Macrosimetría aplicada a la Arquitectura. Rosáceas en 2D y 3D
    • Cuerpo de escaleras.
    • Cajas: edificios poliédricos irregulares.
  9. Macrosimetría aplicada a la Arquitectura. Frisos en 2D
    • Viviendas en hilera.
  10. Macrosimetría aplicada a la Arquitectura. Frisos en 3D
    • Fachadas: edificios prismáticos.
  11. Macrosimetría aplicada a la Arquitectura. Mosaicos periódicos en 2D y 3D
    • Clasificación de zonas con expansión urbanística moderna. Urbanismo racionalista.
  12. Macrosimetría aplicada a la Arquitectura. Mosaicos aperiódicos en 2D y 3D
    • Teselaciones de Delaunay y Voronoi. Aplicación al diseño y a la creación de redes urbanas.
  13. Introducción a la Geometría Fractal
    • Conjuntos de Julià y Mandelbrot.
    • Software para el estudio de fractales.
  14. La dimensión fractal. Ley de potencia
    • Cálculo de dimensiones fractales (de un edificio, una línea natural, etc.).
  15. Estructuras y subestructuras urbanas fractales. Conectando la ciudad fractal.
    • Análisis de estructuras y subestructuras urbanas de Granada.
  16. Curvas y superficies de Bezier.

Bibliografía

Bibliografía fundamental

  • KAPPRAFF, J; Connections. The geometric bridge between Art and Science. World Scientific.
  • PÉREZ GÓMEZ, R. et al.; Geometría Dinámica. Ed. Síntesis.
  • SALINGAROS, N.; Principios de estructura urbana. Conectando la ciudad fractal.DSP.

Bibliografía complementaria

Al inicio de cada tema se indica la Bibliografía específica de ese tema.

Enlaces recomendados

Al final de cada tema se darán los enlaces específicos de ese tema.

Metodología docente

  • MD01. Lección magistral/expositiva 
  • MD03. Resolución de problemas y estudio de casos prácticos 
  • MD06. Prácticas en sala de informática 
  • MD08. Ejercicios de simulación 
  • MD09. Análisis de fuentes y documentos 
  • MD11. Realización de trabajos individuales 

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación Ordinaria

Siguiendo las recomendaciones de la CRUE y del Secretariado de Inclusión y Diversidad de la UGR, los sistemas de adquisición y de evaluación de competencias recogidos en esta guía docente se aplicarán conforme al principio de diseño para todas las personas, facilitando el aprendizaje y la demostración de conocimientos de acuerdo a las necesidades y la diversidad funcional del alumnado.

Atendiendo a la Normativa de Evaluación y de Calificación de los estudiantes de la Universidad de Granada, para esta asignatura se contempla tanto una evaluación continua como una evaluación única final. El sistema preferente de evaluación para todos los alumnos de la asignatura, y que se aplicará por defecto, será el de evaluación continua, cuyas directrices se detallan más abajo. No obstante, el Artículo 8 de la Normativa de Evaluación y Calificación de los Estudiantes de la Universidad de Granada establece los criterios y el procedimiento por los que los estudiantes podrán acogerse a la Evaluación Única Final.

Evaluación continua

Para que un alumno pueda ser evaluado por este sistema debe asistir obligatoriamente a clase con regularidad. Por tanto, a los alumnos que sepan con antelación que no podrán asistir regularmente a clase, se les conmina a solicitar la evaluación única final en plazo y forma (Artículo 8 de la Normativa de Evaluación y Calificación de la UGR).

Como criterios generales, a la hora de evaluar el desempeño del alumnado en la asignatura, se tendrán en cuenta:

  • El dominio de la terminología específica de la materia.
  • La precisión conceptual con el nivel de adecuación y profundidad pertinente.
  • La participación activa e implicación en el desarrollo de las actividades realizadas.

En concreto, la calificación global corresponderá a la puntuación ponderada de los diferentes aspectos y actividades que integran el sistema de evaluación atendiendo a los criterios establecidos para las actuaciones presenciales y no presenciales.

Sistema de evaluación

Ponderación máxima

SE1: Pruebas escritas y prácticas: de ensayo, de respuesta breve, objetivas, casos o supuestos, resolución de problemas.

50.0
SE2: Pruebas orales: exposición de trabajos (individuales o en grupos), entrevistas, debates. 30.0
SE4: Trabajos, informes, estudios, memorias, ... 15.0
SE5: Pruebas de conocimiento y destreza en el uso de medios informáticos. 5.0

A la hora de evaluar el trabajo eficaz del alumnado se tendrán en cuenta los criterios generales que se exponen a continuación:

  • Asistencia activa a las sesiones "de clase" y actividades conjuntas que se propongan.
  • Dominio y precisión conceptual, claridad en la exposición y capacidad de síntesis. Es decir, elaboración de trabajos de manera estructurada, sistemática y documentada.
  • Análisis de tareas en las actividades dirigidas y autónomas.
  • Pruebas de resolución de problemas y actividades complementarias de formación (reflexiones a realizar sobre cuestiones presentadas por el profesor en torno a la lectura de artículos relevantes para la ampliación de contenidos -voluntarios- de la asignatura, y que deberán atenerse a los criterios de estructura y entrega que se expliciten).

En todos los casos, supuestos y convocatorias, para superar la asignatura es necesario obtener al menos un 5 sobre 10 en cada uno de los cuatro ítems (SE1 a SE4) En este caso se habrá superado la asignatura y no se tendrá que hacer el examen de la convocatoria ordinaria de enero. En caso contrario, el estudiantado podrá examinarse en el examen ordinario del temario completo de la asignatura. Dicho examen constará de cuatro bloques, uno por cada tema de la asignatura. Para aprobar la asignatura habrá que obtener al menos un 5 sobre 10 en cada uno de los cuatro bloques y la calificación será la media de los cuatro bloques. Si en un bloque no se obtiene al menos un 5, la calificación en acta será el mínimo de 4.5 puntos y la media aritmética de los cuatro bloques.

Las fechas de los exámenes oficiales de las convocatorias ordinaria y extraordinaria del curso 2025-2026 son las que figuran en el calendario aprobado por la Junta de Centro de la ETSA (véase la página web del centro).

Criterios de evaluación:

  • EV-C1: Constatación del dominio de los contenidos, teóricos y prácticos, y elaboración crítica de los mismos.

  • EV-C2: Valoración de los trabajos realizados, individualmente o en equipo, atendiendo a la presentación, redacción y claridad de ideas, grafismo, estructura y nivel científico, creatividad, justificación de los que argumenta, capacidad y riqueza de la crítica que se hace, y actualización de la bibliografía consultada.

  • EV-C3: Grado de implantación y actitud del alumnado manifestada en su participación en las consultas, exposiciones y debates; así como en la elaboración de los trabajos, individuales o en equipo, y en las sesiones de puesta en común.

  • EV-C4: Asistencia a clase, seminarios, conferencias, tutorías, sesiones de grupo.

Instrumentos de evaluación:

  • EV-I1: Pruebas escritas: de ensayo, de respuesta breve, objetivas, casos o supuestos, resolución de problemas.
  • EV-I2: Pruebas orales: exposición de trabajos (individuales o en grupos), entrevistas, debates.

  • EV-I4: Trabajos, informes, estudios, memorias,...

  • EV-I5: Pruebas de conocimiento y destreza en el uso de medios informáticos.

Evaluación Extraordinaria

Podrán hacer el examen de la convocatoria extraordinaria todos los estudiantes que no hayan superado la asignatura en la convocatoria ordinaria. El examen de la convocatoria extraordinaria podrá incluir preguntas de razonamiento teórico, problemas y cuestiones a resolver con ordenador mediante el software que se haya usado en las clases prácticas. Los alumnos que realicen la prueba de la convocatoria extraordinaria han de examinarse necesariamente del temario completo de la asignatura sin excepción (salvo que este examen se haga bajo el carácter de incidencia debidamente justificada). En la convocatoria extraordinaria se aplican los mismos criterios que los establecidos para la evaluación continua:

En concreto, la evaluación extraordinaria constará de un examen con cuatro bloques, uno por cada uno de los temas 1 a 4 de la asignatura. Para aprobar la asignatura habrá que obtener al menos un 5 sobre 10 en cada uno de los bloques. En este caso la calificación será la media aritmética de los cuatro bloques. De no ser así, la calificación en acta será el mínimo de 4.5 puntos y la media aritmética de los cuatro bloques.

Evaluación única final

Se realizará un examen de la asignatura completa, valorado sobre 10 puntos, que podrá incluir preguntas de razonamiento teórico, problemas y cuestiones a resolver con ordenador mediante el software que se haya usado en las clases prácticas. En la evaluación única final se aplican los mismos criterios que los establecidos para la evaluación continua:

En concreto, la evaluación única final constará de un examen con cuatro bloques, uno por cada uno de los tema desde el 1 al 4 de la asignatura. Para aprobar la asignatura habrá que obtener al menos un 5 sobre 10 en cada uno de los bloques. En este caso la calificación será la media aritmética de los cuatro bloques. De no ser así, la calificación en acta será el mínimo de 4.5 puntos y la media aritmética de los cuatro bloques.

El estudiantado que habiendo solicitado la evaluación única final no se presente a este examen aparecerá en acta como "No Presentado".

Información adicional

Información de interés para estudiantado con discapacidad y/o Necesidades Específicas de Apoyo Educativo (NEAE): Gestión de servicios y apoyos (https://ve.ugr.es/servicios/atencion-social/estudiantes-con-discapacidad).

Software Libre

Geogebra, Maxima.